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J. Phys. A: Math. Gen. 14 (1981) 2789-2793. Printed in Great Britain 

On the thermodynamics of independent Landau electrons 

A Wasserman and J Karniewiczf 
Department of Physics, Oregon State University, Corvallis, Oregon 9733 1, USA 

Received 7 May 1980, in final form 27 April 1981 

Abstract. The thermodynamic potential for independent electrons in a magnetic field is 
calculated by a method that arises from a more general Green function approach. Results 
are obtained in the weak field and the quantum limits. 

The thermodynamics of a gas of independent Landau electrons has had a place in the 
literature for many years, having been studied by several distinct methods (Landau 
1930, Shoenberg 1939, Sondheimer and Wilson 1951). With the acquisition of 
accurate frequency, amplitude and lineshape information even in the quantum limit 
(Barklie and Shoenberg 1975, Rode and Lowndes 1977) for both pure and alloy 
systems, theoretical methods which illuminate the behaviour of Landau electrons in a 
variety of environments have evolved. In particular, from a discussion of electron- 
phonon interactions an approach to this problem was developed in which the thermo- 
dynamic potential could be expressed in terms of interaction self-energies evaluated on 
the imaginary energy axis (Fowler and Prange 1965, Engelsberg and Simpson 1970), an 
approach further developed by the introduction of a simplifying integral technique 
(Wasserman and Bharatiya 1979) used in conjunction with Luttinger's formula 
(Luttinger 1960,1961). Application of the method to the theory of the quantum limit 
in dilute alloys has further demonstrated its utility (Karniewicz 1980). 

Although problems which involve electron interactions are of greatest interest in 
applying this approach, its application to even non-interacting cases introduces some- 
what distinctive features to the evaluation of the thermodynamic potential, with 
the analysis in the high Landau level number region and the quantum limit being 
quite compact, as well as sharing some common features with the interacting case 
(Karniewicz 1980). 

The thermodynamic potential for a non-interacting system of fermions may be 
written in terms of the Green function as 

1 
B n  

f l = - - T r ~ l n [ - G ~ ' ( i r , ) ]  

which may further be expressed as the sum of two contributions, each depending on the 
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location of the imaginary energies T,, = (2n + l)rr/P (Wasserman and Bharatiya 1979), 

a+ = -- Tr [ 
1 

T n > O ,  
1 b+im ds 

- exp{-s[& (p, k,, U) - i ~ ~ ] } ,  

ds  
p n b  s 

O < b < l ,  
b 

L = + - T r E  [ -exp{-s[&(p, kz,c)-iTn]}, T n < O ,  p n b-iao s 

~ ( p ,  k,, U) = k:/2m +wc(p +i) +agkBB - y. 

2 "  Here the Tr = (mwc/2rr ) j-m dk, Z,=O Zm=+1/2, wc = eB/mc is the cyclotron 
frequency, m is the electron band effective mass, B is the magnetic field taken in the t 
direction, gB = e/2moc is the Bohr magneton and ma is the bare electron mass. The 
spin quantum number of the electron is (+, g is the electron g-factor, y is the chemical 
potential and p = (kBT)-' with kB Boltzmann's constant and T the temperature. 

In the limit U,< y the Landau levels are closely spaced and the trace is taken to 
include these summed Landau quantum numbers immediately. The quantum limit 
condition, on the other hand, suggests a differently motivated treatment of the trace, as 
will be discussed below. With the trace and sum over thermal energies carried out, 0, 
and SZ- simply add to give 

mw (2m1"~ 5 b+iw esy rr cosec(rrs/p) cosh(igkBBs) 
T 3 I 2  2 m p  b-im s3 /2  sinh(kw,s) 

f l = - L -  ds. 

(This result is, of course, applicable to both field limits, but it does not prove to be 
convenient for analysis in the quantum limit.) We can proceed by developing the 
Mittag-Lemer expansion 

rr cosec(rrs/p) p m 30 (- l)k+l = y + p  E' 
sinh As As k = - m  (s h ( s  - krri/A) sinh(krr2/Ap) 

where 2A = wc and the prime in the summation indicates that the k = 0 term is omitted. 
The Mittag-Lemer expansion can be integrated term by term, with the first giving, for 
ho < 7, where 2 A o  = gf.L.gB 

In the second term we substitute 

1 1 "  -- s 3 / 2  - r(3/2) I, dx x1l2 exp(-xs), 

which allows the contour integration to be performed with the result 

Repeated integration by parts yields an asymptotic expansion in powers of ( y  f ha)'/' of 
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which the leading contribution is in the degenerate limit 

For PA >> 1 the sum contributes terms of order e--phk, which may be neglected in 
comparison with a contribution arising from the third term of the Mittag-Leffler 
expansion evaluated below. For PA C 1 we write 

-1 2 "  
AP 0 

(sinh APk)-' = (Apk)-l - - dx sin kx[ exp( E) + l] 

whereupon Cl, becomes 

1 2 "  sin kx 
(Apk' Apk lo exp(xx/pA)+l  

x Z ( - l ) k + 1  --- [ k 

The sum and the integral may be approximated by writing 

sin kx * sin kx sin kx dx. 
exp(.rrx/Ph) + 1 

In comparison with the first integral on the right-hand side, the second is exponentially 
negligible. Summing the first over k and then extending the upper limit, we have 

dx + jTm d x = j  low exp(rrx/pA) + 1 o exp(.rrx/PA 1 + 1 

X PZA2 
dx=- Io" exp(.rrx/pA) + 1 12 

so that 

Finally, the third term in the Mittag-Leffler expansion may be integrated by 
rewriting the integral as 

Then an integration by parts yields two terms, C13 = Cl:" + Cl;, where 

(-1) k f l  A 1/2 ~k(y+heiC2(k~(;+Ao))  & kjiL sinh(k.rr'/pA) ['Os A 
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where C2(u)  and S 2 ( u )  are Fresnel integrals (Gautschi 1972). In the limit A o <  y the 
Fresnel integrals converge rapidly to a constant and the usual de Haas-van Alphen 
harmonic series is recovered. 

Finally 

involves an infinite series much like that treated in R2, except for the manner in which 
PA appears. In this case, when PA << 1 the result is negligibly small, but when PA > 1 we 
may use the same method as above to evaluate the sum and, moreover, obtain the same 
result. 

In the quantum limit the separation between Landau levels is large and the 
differential susceptibility appears as a series of distinct peaks with, perhaps, spin- 
induced splitting or lineshape distortions. The procedure that suggests itself is the 
isolation of contributions from each spin-split Landau level and the eventual sum- 
mation over all such contributions (Rode and Lowndes 1977). One might think of this 
as a regrouping of the de Haas-van Alphen harmonic series into a series that is more 
rapidly convergent in this limit. This analogy is drawn with some caution, since it is not 
clear that the susceptibili.ty terms that contributed weak field variation when oc < y will 
continue to do  so in the quantum limit. Returning to our starting point, the sum over 
thermal energies and the integration over k ,  are carried out. The sum over Landau 
levels and spin is delayed. The two contributions R+ and R- can again be added to give 
a single integral 

where d = ( p  + 3)wc + agpBB - y. 
We again find a Mittag-Leffler expansion a convenient analytic tool: 

which immediately allows us to express R as the sum of two groups of terms, one 
independent of temperature and the .other containing the temperature corrections. 
Writing R = Ro + RT, we have then 

and 
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Evaluating the contour integral in no, we have 

The step function, O(x), signifies that as soon as a spin-split Landau level passes through 
the Fermi energy, i.e. ( p  +i)wc+agpBB > y, it no longer contributes to the thermo- 
dynamic potential. There may, however, be contributions in this 'extinction zone' from 
the low field side of the next higher Landau level (if there is one) or from a nearby spin 
state (if there is one). In the presence of impurity scattering this discontinuity is less 
drastic even at zero temperature, and the emerging lineshape is very sensitive to 
impurity scattering rates (Rode and Lowndes 1977, Karniewicz 1980). With decreas- 
ing magnetic field the low field sides of several peaks begin to overlap, for we are 
entering the region U,< y where the harmonic analysis best describes the situation. 

The finite-temperature contribution to the thermodynamic potential itself does not 
yield a convenient closed form; however, we continue the analysis with 

and write nT = + n; where 
b+im e-s[s*xl 

WC E,- (-qk Jo dx e-'"/ d s 7 ,  
n:=-(2m 7T) 

2mP PP k b-im 

which yields, after doing the complex integration and the sum, 

where S I l 2 ( a )  = $&(\a I - c ~ ) " ~ / I a  1 and L(x)  = ln(1 +e-"). 
After integration by parts we have 

where E ( x )  = (eX+l)- '  and S 3 / 2 ( ( ~ )  = &(la] 
differentiation to obtain other thermodynamic variables. 

a form which is convenient for 
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